Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.393
Filtrar
1.
Front Microbiol ; 15: 1326369, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38633699

RESUMO

Leishmaniasis is a vector-borne disease caused by the protozoan parasite of Leishmania genus and is a complex disease affecting mostly tropical regions of the world. Unfortunately, despite the extensive effort made, there is no vaccine available for human use. Undoubtedly, a comprehensive understanding of the host-vector-parasite interaction is substantial for developing an effective prophylactic vaccine. Recently the role of sandfly saliva on disease progression has been uncovered which can make a substantial contribution in vaccine design. In this review we try to focus on the strategies that most probably meet the prerequisites of vaccine development (based on the current understandings) including live attenuated/non-pathogenic and subunit DNA vaccines. Innovative approaches such as reverse genetics, CRISP/R-Cas9 and antibiotic-free selection are now available to promisingly compensate for intrinsic drawbacks associated with these platforms. Our main goal is to call more attention toward the prerequisites of effective vaccine development while controlling the disease outspread is a substantial need.

2.
Artigo em Inglês | MEDLINE | ID: mdl-38655616

RESUMO

Vaccines play essential roles in the fight against the COVID-19 pandemic. The development and assessment of COVID-19 vaccines have generally focused on the induction and boosting of neutralizing antibodies targeting the SARS-CoV-2 spike (S) protein. Due to rapid and continuous variation in the S protein, such vaccines need to be regularly updated to match newly emerged dominant variants. T-cell vaccines that target MHC I- or II-restricted epitopes in both structural and non-structural viral proteins have the potential to induce broadly cross-protective and long-lasting responses. In this work, the entire proteome encoded by SARS-CoV-2 (Wuhan-hu-1) is subjected to immunoinformatics-based prediction of HLA-A*02:01-restricted epitopes. The immunogenicity of the predicted epitopes is evaluated using peripheral blood mononuclear cells from convalescent Wuhan-hu-1-infected patients. Furthermore, predicted epitopes that are conserved across major SARS-CoV-2 lineages and variants are used to construct DNA vaccines expressing multi-epitope polypeptides. Most importantly, two DNA vaccine constructs induce epitope-specific CD8 + T-cell responses in a mouse model of HLA-A*02:01 restriction and protect immunized mice from challenge with Wuhan-hu-1 virus after hACE2 transduction. These data provide candidate T-cell epitopes useful for the development of T-cell vaccines against SARS-CoV-2 and demonstrate a strategy for quick T-cell vaccine candidate development applicable to other emerging pathogens.

3.
Virulence ; 15(1): 2345019, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38656137

RESUMO

Klebsiella pneumoniae is an important gram-negative bacterium that causes severe respiratory and healthcare-associated infections. Although antibiotic therapy is applied to treat severe infections caused by K. pneumoniae, drug-resistant isolates pose a huge challenge to clinical practices owing to adverse reactions and the mismanagement of antibiotics. Several studies have attempted to develop vaccines against K. pneumoniae, but there are no licensed vaccines available for the control of K. pneumoniae infection. In the current study, we constructed a novel DNA vaccine, pVAX1-YidR, which encodes a highly conserved virulence factor YidR and a recombinant expression plasmid pVAX1-IL-17 encoding Interleukin-17 (IL-17) as a molecular adjuvant. Adaptive immune responses were assessed in immunized mice to compare the immunogenicity of the different vaccine schemes. The results showed that the targeted antigen gene was expressed in HEK293T cells using an immunofluorescence assay. Mice immunized with pVAX1-YidR elicited a high level of antibodies, induced strong cellular immune responses, and protected mice from K. pneumoniae challenge. Notably, co-immunization with pVAX1-YidR and pVAX1-IL-17 significantly augmented host adaptive immune responses and provided better protection against K. pneumoniae infections in vaccinated mice. Our study demonstrates that combined DNA vaccines and molecular adjuvants is a promising strategy to develop efficacious antibacterial vaccines against K. pneumoniae infections.


Assuntos
Vacinas Bacterianas , Modelos Animais de Doenças , Interleucina-17 , Infecções por Klebsiella , Klebsiella pneumoniae , Vacinas de DNA , Animais , Klebsiella pneumoniae/imunologia , Klebsiella pneumoniae/genética , Infecções por Klebsiella/prevenção & controle , Infecções por Klebsiella/imunologia , Interleucina-17/imunologia , Interleucina-17/genética , Vacinas de DNA/imunologia , Vacinas de DNA/genética , Vacinas de DNA/administração & dosagem , Camundongos , Humanos , Feminino , Vacinas Bacterianas/imunologia , Vacinas Bacterianas/genética , Vacinas Bacterianas/administração & dosagem , Células HEK293 , Proteínas de Bactérias/imunologia , Proteínas de Bactérias/genética , Imunização , Anticorpos Antibacterianos/sangue , Anticorpos Antibacterianos/imunologia , Fatores de Virulência/imunologia , Fatores de Virulência/genética , Imunidade Adaptativa , Camundongos Endogâmicos BALB C , Adjuvantes Imunológicos/administração & dosagem , Imunidade Celular
4.
Scand J Immunol ; 99(5): e13356, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38605549

RESUMO

In light of increasing resistance to PD1 antibody therapy among certain patient populations, there is a critical need for in-depth research. Our study assesses the synergistic effects of a MUC1 DNA vaccine and PD1 antibody for surmounting PD1 resistance, employing a murine CT26/MUC1 colon carcinoma model for this purpose. When given as a standalone treatment, PD1 antibodies showed no impact on tumour growth. Additionally, there was no change observed in the intra-tumoural T-cell ratios or in the functionality of T-cells. In contrast, the sole administration of a MUC1 DNA vaccine markedly boosted the cytotoxicity of CD8+ T cells by elevating IFN-γ and granzyme B production. Our compelling evidence highlights that combination therapy more effectively inhibited tumour growth and prolonged survival compared to either monotherapy, thus mitigating the limitations intrinsic to single-agent therapies. This enhanced efficacy was driven by a significant alteration in the tumour microenvironment, skewing it towards pro-immunogenic conditions. This assertion is backed by a raised CD8+/CD4+ T-cell ratio and a decrease in immunosuppressive MDSC and Treg cell populations. On the mechanistic front, the synergistic therapy amplified expression levels of CXCL13 in tumours, subsequently facilitating T-cell ingress into the tumour setting. In summary, our findings advocate for integrated therapy as a potent mechanism for surmounting PD1 antibody resistance, capitalizing on improved T-cell functionality and infiltration. This investigation affords critical perspectives on enhancing anti-tumour immunity through the application of innovative therapeutic strategies.


Assuntos
Neoplasias , Vacinas de DNA , Camundongos , Animais , Humanos , Linfócitos T CD8-Positivos , Receptor de Morte Celular Programada 1/metabolismo , Anticorpos/metabolismo , Neoplasias/metabolismo , Linhagem Celular Tumoral , Microambiente Tumoral , Mucina-1/genética
5.
Int J Biol Macromol ; 264(Pt 2): 130660, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38460634

RESUMO

The emergence of SARS-CoV-2 presents a significant global public health dilemma. Vaccination has long been recognized as the most effective means of preventing the spread of infectious diseases. DNA vaccines have attracted attention due to their safety profile, cost-effectiveness, and ease of production. This study aims to assess the efficacy of plasmid-encoding GM-CSF (pGM-CSF) as an adjuvant to augment the specific humoral and cellular immune response elicited by DNA vaccines based on the receptor-binding domain (RBD) antigen. Compared to the use of plasmid-encoded RBD (pRBD) alone, mice that were immunized with a combination of pRBD and pGM-CSF exhibited significantly elevated levels of RBD-specific antibody titers in serum, BALF, and nasal wash. Furthermore, these mice generated more potent neutralization antibodies against both the wild-type and Omicron pseudovirus, as well as the ancestral virus. In addition, pGM-CSF enhanced pRBD-induced CD4+ and CD8+ T cell responses and promoted central memory T cells storage in the spleen. At the same time, tissue-resident memory T (Trm) cells in the lung also increased significantly, and higher levels of specific responses were maintained 60 days post the final immunization. pGM-CSF may play an adjuvant role by promoting antigen expression, immune cells recruitment and GC B cell responses. In conclusion, pGM-CSF may be an effective adjuvant candidate for the DNA vaccines against SARS-CoV-2.


Assuntos
COVID-19 , Vacinas de DNA , Humanos , Animais , Camundongos , Fator Estimulador de Colônias de Granulócitos e Macrófagos , SARS-CoV-2 , Vacinas contra COVID-19 , COVID-19/prevenção & controle , Adjuvantes Imunológicos/farmacologia , Adjuvantes Farmacêuticos , Vacinação , DNA , Anticorpos Antivirais , Anticorpos Neutralizantes
6.
Int J Pharm ; 654: 123959, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38430949

RESUMO

DNA vaccines can be a potential solution to protect global health, triggering both humoral and cellular immune responses. DNA vaccines are valuable in preventing intracellular pathogen infections, and therefore can be explored against coronavirus disease (COVID-19) caused by severe acute respiratory syndrome coronavirus (SARS-CoV-2). This work explored different systems based on polyethylenimine (PEI), functionalized for the first time with both cholesterol (CHOL) and mannose (MAN) to deliver parental plasmid (PP) and minicircle DNA (mcDNA) vectors encoding the receptor-binding domain (RBD) of SARS-CoV-2 to antigen-presenting cells (APCs). For comparative purposes, three different systems were evaluated: PEI, PEI-CHOL and PEI-CHOL-MAN. The systems were prepared at various nitrogen-to-phosphate group (N/P) ratios and characterized in terms of encapsulation efficiency, surface charge, size, polydispersity index (PDI), morphology, and stability over time. Moreover, in vitro transfection studies of dendritic cells (JAWS II) and human fibroblast cells were performed. Viability studies assured the biocompatibility of all nanocarriers. Confocal microscopy studies confirmed intracellular localization of systems, resulting in enhanced cellular uptake using PEI-CHOL and PEI-CHOL-MAN systems when compared with the PEI system. Regarding the RBD expression, PEI-CHOL-MAN was the system that led to the highest levels of transcripts and protein expression in JAWS II cells. Furthermore, the nanosystems significantly stimulated pro-inflammatory cytokines production and dendritic cell maturation in vitro. Overall, mannosylated systems can be considered a valuable tool in the delivery of plasmid DNA or mcDNA vaccines to APCs.


Assuntos
COVID-19 , Nanopartículas , Vacinas de DNA , Humanos , Polietilenoimina/química , Vacinas contra COVID-19 , COVID-19/prevenção & controle , SARS-CoV-2/genética , Transfecção , DNA , Células Apresentadoras de Antígenos , Colesterol , Nanopartículas/química
7.
Fish Shellfish Immunol ; 148: 109502, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38471627

RESUMO

ß-defensin of flounder plays an important role in immunomodulation by recruiting immune cells and has a potential vaccine adjuvant effect in addition to its bactericidal activity. In this study, adjuvant effects of ß-defensin on DNA vaccine OmpC against edwardsiellosis in flounder (Paralichthys olivaceus) were investigated. The bicistronic eukaryotic expression plasmid pBudCE4.1 plasmid vector with two independent coding regions was selected to construct DNA vaccine of p-OmpC which express only the gene for the outer membrane protein of Edwardsiella tarda and the vaccine of p-OmpC-ßdefensin which express both the outer membrane protein of the bacterium and ß-defensin of flounder. In vitro and in vivo studies have shown that the constructed plasmids can be expressed in flounder embryonic cell lines and injection sites of muscles. After vaccination by intramuscular injection, both p-OmpC and p-OmpC-ßdefensin groups showed significant upregulation of immune-response. Compared to the pBbudCE4.1 and the p-OmpC vaccinated groups, the p-OmpC-ßdefensin vaccinated group showed significantly more cell aggregation at the injection site and intense immune response. The proportion of sIgM+ cells, as well as the CD4-1+ and CD4-2+ cells in both spleen and kidney was significantly higher in the p-OmpC-ßdefensin vaccinated group at peak time point than in the control groups. The relative survival rate of the p-OmpC-ßdefensin vaccine was 74.17%, which was significantly higher than that of the p-OmpC vaccinated group 48.33%. The results in this study determined that ß-defensin enhances the responses in cellular and humoral immunity and evokes a high degree of protection against E. tarda, which is a promising candidate for vaccine adjuvant.


Assuntos
Infecções por Enterobacteriaceae , Doenças dos Peixes , Linguado , Vacinas de DNA , beta-Defensinas , Animais , beta-Defensinas/genética , Adjuvantes de Vacinas , Adjuvantes Imunológicos/farmacologia , Edwardsiella tarda , Vacinas Bacterianas , Infecções por Enterobacteriaceae/prevenção & controle , Infecções por Enterobacteriaceae/veterinária
8.
Fish Shellfish Immunol ; 148: 109494, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38499217

RESUMO

Vibrio harveyi poses a significant threat to fish and invertebrates in mariculture, resulting in substantial financial repercussions for the aquaculture sector. Valine-glycine repeat protein G (VgrG) is essential for the type VI secretion system's (T6SS) assembly and secretion. VgrG from V. harveyi QT520 was cloned and analyzed in this study. The localization of VgrG was determined by Western blot, which revealed that it was located in the cytoplasm, secreted extracellularly, and attached to the membrane. The effectiveness of two vaccinations against V. harveyi infection-a subunit vaccine (rVgrG) and a DNA vaccine (pCNVgrG) prepared with VgrG was evaluated. The findings indicated that both vaccines provided a degree of protection against V. harveyi challenge. At 4 weeks post-vaccination (p.v.), the rVgrG and pCNVgrG exhibited relative percent survival rates (RPS) of 71.43% and 76.19%, respectively. At 8 weeks p.v., the RPS for rVgrG and pCNVgrG were 68.21% and 72.71%, respectively. While both rVgrG and pCNVgrG elicited serum antibody production, the subunit vaccinated fish demonstrated significantly higher levels of serum anti-VgrG specific antibodies than the DNA vaccine group. The result of qRT-PCR demonstrated that the expression of major histocompatibility complex (MHC) class Iα, tumor necrosis factor-alpha (TNF-α), interferon γ (IFNγ), and cluster of differentiation 4 (CD4) were up-regulated by both rVgrG and pCNVgrG. Fish vaccinated with rVgrG and pCNVgrG exhibited increased activity of acid phosphatase, alkaline phosphatase, superoxide dismutase, and lysozyme. These findings suggest that VgrG from V. harveyi holds potential for application in vaccination.


Assuntos
Doenças dos Peixes , Vacinas de DNA , Vibrioses , Vibrio , Animais , Vibrioses/prevenção & controle , Vibrioses/veterinária , Valina , Vacinas Bacterianas , Peixes , Doenças dos Peixes/prevenção & controle
9.
Biomedicines ; 12(3)2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38540137

RESUMO

Efficient delivery of a DNA plasmid into antigen-presenting cells (APCs) is a potential strategy to enhance the immune responses of DNA vaccines. The bacterial ghost (BG) is a potent DNA vaccine delivery system that targets APCs. In the present work, we describe a new strategy of using E. coli BGs as carriers for an Ii-linked Hepatitis C Virus (HCV) NS3 DNA vaccine that improved both the transgene expression level and the antigen-presentation level in APCs. BGs were prepared from DH5α cells, characterized via electron microscopy and loaded with the DNA vaccine. The high transfection efficiency mediated using BGs was first evaluated in vitro, and then, the immune protective effect of the BG-Ii-NS3 vaccine was determined in vivo. It was found that the antibody titer in the sera of BG-Ii-NS3-challenged mice was higher than that of Ii-NS3-treated mice, indicating that the BGs enhanced the humoral immune activity of Ii-NS3. The cellular immune protective effect of the BG-Ii-NS3 vaccine was determined using long-term HCV NS3 expression in a mouse model in which luciferase was used as a reporter for HCV NS3 expression. Our results showed that the luciferase activity in BG-Ii-NS3-treated mice was significantly reduced compared with that in Ii-NS3-treated mice. The CTL assay results demonstrated that BG-Ii-NS3 induced a greater NS3-specific T-cell response than did Ii-NS3. In summary, our study demonstrated that BGs enhanced both the humoral and cellular immune response to the Ii-NS3 DNA vaccine and improved its immune protection against HCV infection.

10.
Vaccines (Basel) ; 12(3)2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38543852

RESUMO

An in-depth analysis of antibody epitopes following vaccination with different regimens provides important insight for developing future vaccine strategies. B-cell epitopes conserved across virus variants may be ideal targets for vaccine-induced antibodies and therapeutic drugs. However, challenges lie in identifying these key antigenic regions, and directing the immune system to target them. We previously evaluated the immunogenicity of two candidate DNA vaccines encoding the unmodified spike protein of either the SARS-CoV-2 Index strain or the Beta variant of concern (VOC). As a follow-on study, we characterized here the antibody binding profiles of three groups of mice immunized with either the DNA vaccine encoding the SARS-CoV-2 Index strain spike protein only, the Beta VOC spike protein only, or a combination of both as an antigen-heterologous prime-boost regimen. The latter induced an antibody response targeting overlapping regions that were observed for the individual vaccines but with additional high levels of antibody directed against epitopes in the SD2 region and the HR2 region. These heterologous-vaccinated animals displayed improved neutralization breadth. We believe that a broad-focused vaccine regimen increases neutralization breadth, and that the in-depth analysis of B-cell epitope targeting used in this study can be applied in future vaccine research.

11.
Vaccines (Basel) ; 12(3)2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38543958

RESUMO

Porcine circovirus type 2 (PCV2) is the main causative agent of porcine circovirus-associated disease (PCVAD) that profoundly impacts the swine industry worldwide. While most of the commercial PCV vaccines are developed based on PCV genotype 2a (PCV2a), PCV genotype 2b (PCV2b) has become predominant since 2003. In this study, we developed and evaluated DNA-based bivalent vaccines covering both PCV2a and PCV2b. We generated a new immunogen, PCV2b-2a, by combining consensus sequences of the PCV2a and PCV2b capsid proteins (Cap2a and Cap2b) in a form of fusion protein. We also examined whether modifications of the PCV2b-2a fusion protein with a signal sequence (SS) and granulocyte macrophage-colony stimulating factor (GM-CSF) fusing with interleukine-4 (IL-4) (GI) could further improve the vaccine immunogenicity. An immunogenicity study of BALB/cAJcl mice revealed that the DNA vector pVAX1 co-expressing PCV2b-2a and GI (pVAX1.PCV2b-2a-GI) was most potent at inducing both antibody and cellular immune responses against Cap2a and Cap2b. Interestingly, the vaccines skewed the immune response towards Th1 phenotype (IgG2a > IgG1). By performing ELISA and ELISpot with predicted epitope peptides, the three most immunogenic B cell epitopes and five putative T cell epitopes were identified on Cap2a and Cap2b. Importantly, our DNA vaccines elicited broad immune responses recognizing both genotype-specific and PCV2-conserved epitopes. Sera from mice immunized with the DNAs expressing PCV2b-2a and PCV2b-2a-GI significantly inhibited PCV2a cell entry at serum dilution 1:8. All these results suggest a great potential of our PCV2b-2a-based vaccines, which can be further developed for use in other vaccine platforms to achieve both vaccine efficacy and economical production cost.

12.
Front Immunol ; 15: 1342816, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38515753

RESUMO

Salmonid alphavirus (SAV) causes pancreas disease (PD), which negatively impacts farmed Atlantic salmon. In this study, fish were vaccinated with a DNA-PD vaccine (DNA-PD) and an oil-adjuvanted, inactivated whole virus PD vaccine (Oil-PD). Controls were two non-PD vaccinated groups. Fish were kept in one tank and challenged by cohabitation with SAV genotype 2 in seawater. Protection against infection and mortality was assessed for 84 days (Efficacy study). Nineteen days post challenge (dpc), subgroups of fish from all treatment groups were transferred to separate tanks and cohabited with naïve fish (Transmission study 1) or fish vaccinated with a homologous vaccine (Transmission study 2), to evaluate virus transmission for 26 days (47 dpc). Viremia, heart RT-qPCR and histopathological scoring of key organs affected by PD were used to measure infection levels. RT-droplet digital PCR quantified shedding of SAV into water for transmission studies. The Efficacy study showed that PD associated growth-loss was significantly lower and clearance of SAV2 RNA significantly higher in the PD-DNA group compared to the other groups. The PD-DNA group had milder lesions in the heart and muscle. Cumulative mortality post challenge was low and not different between groups, but the DNA-PD group had delayed time-to-death. In Transmission study 1, the lowest water levels of SAV RNA were measured in the tanks containing the DNA-PD group at 21 and 34 dpc. Despite this, and irrespective of the treatment group, SAV2 was effectively transmitted to the naïve fish during 26-day cohabitation. At 47 dpc, the SAV RNA concentrations in the water were lower in all tanks compared to 34 dpc. In Transmission study 2, none of the DNA-PD immunized cohabitants residing with DNA-PD-vaccinated, pre-challenged fish got infected. In contrast, Oil-PD immunized cohabitants residing with Oil-PD-vaccinated, pre-challenged fish, showed infection levels similar to the naïve cohabitants in Transmission study 1. The results demonstrate that the DNA-PD vaccine may curb the spread of SAV infection as the DNA-PD vaccinated, SAV2 exposed fish, did not spread the infection to cohabiting DNA-PD vaccinated fish. This signifies that herd immunity may be achieved by the DNA-PD vaccine, a valuable tool to control the PD epizootic in farmed Atlantic salmon.


Assuntos
Alphavirus , Doenças dos Peixes , Pancreatopatias , Salmo salar , Vacinas de DNA , Vacinas Virais , Animais , Pancreatopatias/veterinária , Pancreatopatias/patologia , RNA/genética , Água , Pâncreas/patologia , DNA , Genótipo
13.
Vet Anim Sci ; 24: 100345, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38516388

RESUMO

The larval stages of Echinococcus multilocularis (E. multilocularis) are what cause the zoonotic disease known as alveolar echinococcosis (AE). Identifying the antigens that trigger immune responses during infection is extremely important for the development of vaccines against Echinococcus infections. Several studies conducted in recent decades have described the specific traits of the protective antigens found in E. multilocularis and their role in immunizing different animal hosts. The objective of the current systematic review was to summarize the findings of relevant literature on this topic and unravel the most effective vaccine candidate antigens for future research. A comprehensive search was conducted across five databases, including ProQuest, PubMed, Scopus, ScienceDirect, and Web of Science, until March 1, 2023. Two reviewers autonomously conducted the screening and evaluation of data extraction and quality assessment. In the present study, a total of 41 papers matched the criteria for inclusion. The study findings indicate that the combination of Em14-3-3 and BCG is widely considered the most often employed antigens for E. multilocularis immunization. In addition, the study describes antigen delivery, measurement of immune responses, adjuvants, animal models, as well as routes and doses of vaccination. The research indicated that recombinant vaccines containing EMY162, EM95, and EmII/3-Em14-3-3 antigens and crude or purified antigens containing ribotan-formulated excretory/secretory antigens exhibited the most favorable outcomes and elicited protective immune responses.

14.
AAPS PharmSciTech ; 25(3): 60, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38472523

RESUMO

The protective efficacies of current licensed vaccines against COVID-19 have significantly reduced as a result of SARS-CoV-2 variants of concern (VOCs) which carried multiple mutations in the Spike (S) protein. Considering that these vaccines were developed based on the S protein of the original SARS-CoV-2 Wuhan strain, we designed a recombinant plasmid DNA vaccine based on highly conserved and immunogenic B and T cell epitopes against SARS-CoV-2 Wuhan strain and the Omicron VOC. Literature mining and bioinformatics were used to identify 6 immunogenic peptides from conserved regions of the SARS-CoV-2 S and membrane (M) proteins. Nucleotide sequences encoding these peptides representing highly conserved B and T cell epitopes were cloned into a pVAX1 vector to form the pVAX1/S2-6EHGFP recombinant DNA plasmid vaccine. The DNA vaccine was intranasally or intramuscularly administered to BALB/c mice and evaluations of humoral and cellular immune responses were performed. The intramuscular administration of pVAX1/S2-6EHGFP was associated with a significantly higher percentage of CD8+ T cells expressing IFN-γ when compared with the empty vector and PBS controls. Intramuscular or intranasal administrations of pVAX1/S2-6EHGFP resulted in robust IgG antibody responses. Sera from mice intramuscularly immunized with pVAX1/S2-6EHGFP were found to elicit neutralizing antibodies capable of SARS-CoV-2 Omicron variant with the ACE2 cell surface receptor. This study demonstrated that the DNA vaccine construct encoding highly conserved immunogenic B and T cell epitopes was capable of eliciting potent humoral and cellular immune responses in mice.


Assuntos
COVID-19 , Vacinas de DNA , Animais , Humanos , Camundongos , SARS-CoV-2 , Epitopos de Linfócito T , Camundongos Endogâmicos BALB C , Linfócitos T CD8-Positivos , Vacinas contra COVID-19 , Peptídeos , Anticorpos Antivirais
15.
Viruses ; 16(3)2024 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-38543793

RESUMO

Single-dose, immunogenic DNA (iDNA) vaccines coding for whole live-attenuated viruses are reviewed. This platform, sometimes called immunization DNA, has been used for vaccine development for flavi- and alphaviruses. An iDNA vaccine uses plasmid DNA to launch live-attenuated virus vaccines in vitro or in vivo. When iDNA is injected into mammalian cells in vitro or in vivo, the RNA genome of an attenuated virus is transcribed, which starts replication of a defined, live-attenuated vaccine virus in cell culture or the cells of a vaccine recipient. In the latter case, an immune response to the live virus vaccine is elicited, which protects against the pathogenic virus. Unlike other nucleic acid vaccines, such as mRNA and standard DNA vaccines, iDNA vaccines elicit protection with a single dose, thus providing major improvement to epidemic preparedness. Still, iDNA vaccines retain the advantages of other nucleic acid vaccines. In summary, the iDNA platform combines the advantages of reverse genetics and DNA immunization with the high immunogenicity of live-attenuated vaccines, resulting in enhanced safety and immunogenicity. This vaccine platform has expanded the field of genetic DNA and RNA vaccines with a novel type of immunogenic DNA vaccines that encode entire live-attenuated viruses.


Assuntos
Flavivirus , Vacinas de DNA , Vacinas Virais , Animais , Anticorpos Antivirais , Flavivirus/genética , Vacinas Atenuadas , DNA , Mamíferos
16.
Front Immunol ; 15: 1362780, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38487527

RESUMO

Dengue, caused by the dengue virus (DENV), affects millions of people worldwide every year. This virus has two distinct life cycles, one in the human and another in the mosquito, and both cycles are crucial to be controlled. To control the vector of DENV, the mosquito Aedes aegypti, scientists employed many techniques, which were later proved ineffective and harmful in many ways. Consequently, the attention shifted to the development of a vaccine; researchers have targeted the E protein, a surface protein of the virus and the NS1 protein, an extracellular protein. There are several types of vaccines developed so far, such as live attenuated vaccines, recombinant subunit vaccines, inactivated virus vaccines, viral vectored vaccines, DNA vaccines, and mRNA vaccines. Along with these, scientists are exploring new strategies of developing improved version of the vaccine by employing recombinant DNA plasmid against NS1 and also aiming to prevent the infection by blocking the DENV life cycle inside the mosquitoes. Here, we discussed the aspects of research in the field of vaccines until now and identified some prospects for future vaccine developments.


Assuntos
Vacinas contra Dengue , Vírus da Dengue , Dengue , Vacinas de DNA , Vacinas Virais , Animais , Humanos , Vírus da Dengue/genética , Mosquitos Vetores , Vacinas Atenuadas , Vacinas de Produtos Inativados
17.
Biomed Pharmacother ; 172: 116264, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38359491

RESUMO

Pseudomonas aeruginosa (PA) is one of the leading pathogens responsible for hospital-acquired infections. With the increasing antibiotic resistance of PA, clinical treatment has become increasingly challenging. DNA vaccines represent a promising approach for combating PA infection. However, the immune response induced by a single antigen is limited, and combination vaccines hold greater therapeutic potential. The highly conserved OprF and PcrV genes are attractive candidate antigens for vaccine development, but the poor delivery of such vaccines has limited their clinical application. In this study, we constructed an OprF/PcrV bivalent DNA vaccine, and a polyaspartamide/polyethylene glycol di-aldehyde (PSIH/PEG DA) hydrogel was formulated to improve DNA delivery. The OprF/PcrV DNA vaccine formulated with the PSIH/PEG DA hydrogel was carefully characterized in vitro and in vivo and showed suitable compatibility. The PSIH/PEG DA hydrogel formulation induced a mixed Th1/Th2/Th17 immune response in mice, leading to a significant increase in antibody titers, lymphocyte proliferation rates, and cytokine levels compared to those in mice treated with single or combined vaccines. The PSIH/PEG DA hydrogel delivery system significantly enhanced the immune protection of the DNA vaccine in a murine pneumonia model, as revealed by the reduced bacterial burden and inflammation in the mouse lungs and increased survival rate. In conclusion, the PSIH/PEG DA hydrogel delivery system can further enhance the immune efficacy of the combination OprF/PcrV DNA vaccine. This research provides a novel optimized strategy for the prevention and treatment of PA infection using DNA vaccines.


Assuntos
Infecções por Pseudomonas , Vacinas de DNA , Animais , Camundongos , Hidrogéis , Pseudomonas aeruginosa , Aldeídos , Materiais Biocompatíveis , Infecções por Pseudomonas/prevenção & controle
18.
Fish Shellfish Immunol ; 147: 109410, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38309489

RESUMO

Nocardia seriolae has been identified as the causative agent of fish nocardiosis, resulting in serious economic losses in aquaculture. With an aim to screen potential candidates for vaccine development against N. seriolae, the in vivo-induced genes of N. seriolae in hybrid snakehead (Channa maculate ♀ × Channa argus ♂) model were profiled via in vivo-induced antigen technology (IVIAT) in the present study, and 6 in vivo-induced genes were identified as follows: IS701 family transposase (is701), membrane protein insertase YidC (yidC), ergothioneine biosynthesis glutamate-cysteine ligase (egtA), molybdopterin respectively-dependent oxidoreductase (mol), phosphoketolase family protein (Ppl), hypothetical protein 6747 (hp6747). Additionally, the yidC was inserted into eukaryotic expression vector pcDNA3.1-myc-his-A to construct a DNA vaccine named as pcDNA-YidC to evaluate immunoprotection in hybrid snakehead after artificial challenge with N. serioale. Results showed that the transcription of yidC was detected in spleen, trunk kidney, muscle and liver in vaccinated fish, suggesting that this antigenic gene can be recombinantly expressed in fish. Meanwhile, indexes of humoral immunity were evaluated in the vaccinated fish through assessing specific-antibody IgM and serum enzyme activities, including lysozyme (LZM), superoxide dismutase (SOD), acid phosphatase (ACP) and alkaline phosphatase (AKP). Quantitative real-time PCR analysis indicated that pcDNA-YidC DNA vaccine could notably enhance the expression of immune-related genes (CD4、CD8α、MHCIIα、TNFα、IL-1ß and MHCIα) in 4 tissues (spleen, trunk kidney, muscle and liver) of the vaccinated fish. Finally, an immuno-protection with a relative survival rate of 65.71 % was displayed in vaccinated fish in comparison to the control groups. Taken together, these results indicate that pcDNA-YidC DNA vaccine could boost strong immune responses in hybrid snakehead and show preferably protective efficacy against N. seriolae, indicating that IVIAT is a helpful strategy to screen the highly immunogenic antigens for vaccine development against fish nocardiosis.


Assuntos
Doenças dos Peixes , Nocardiose , Nocardia , Vacinas de DNA , Animais , Peixes
19.
Vaccine ; 42(7): 1487-1497, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38350766

RESUMO

H5 highly pathogenic avian influenza (HPAI) viruses of the Asian lineage (A/goose/Guangdong/1/96) belonging to clade 2.3.4.4 have spread worldwide through wild bird migration in two major waves: in 2014/2015 (clade 2.3.4.4c), and since 2016 up to now (clade 2.3.4.4b). Due to the increasing risk of these H5 HPAI viruses to establish and persist in the wild bird population, implementing vaccination in certain sensitive areas could be a complementary measure to the disease control strategies already applied. In this study, the efficacy of a novel DNA vaccine, encoding a H5 gene (A/gyrfalcon/Washington/41088-6/2014 strain) of clade 2.3.4.4c was evaluated in specific pathogen-free (SPF) white leghorn chickens against a homologous and heterologous H5 HPAI viruses. A single vaccination at 2 weeks of age (1 dose), and a vaccination at 2 weeks of age, boosted at 4 weeks (2 doses), with or without adjuvant were characterized. The groups that received 1 dose with or without adjuvant as well as 2 doses with adjuvant demonstrated full clinical protection and a significant or complete reduction of viral shedding against homologous challenge at 6 and 25 weeks of age. The heterologous clade 2.3.4.4b challenge of 6-week-old chickens vaccinated with 2 doses with or without adjuvant showed similar results, indicating good cross-protection induced by the DNA vaccine. Long lasting humoral immunity was observed in vaccinated chickens up to 18 or 25 weeks of age, depending on the vaccination schedule. The analysis of viral transmission after homologous challenge showed that sentinels vaccinated with 2 doses with adjuvant were fully protected against mortality with no excretion detected. This study of H5 DNA vaccine efficacy confirmed the important role that this type of so-called third-generation vaccine could play in the fight against H5 HPAI viruses.


Assuntos
Vírus da Influenza A , Vacinas contra Influenza , Influenza Aviária , Vacinas de DNA , Animais , Galinhas , Vacinação/veterinária , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética
20.
J Med Virol ; 96(2): e29452, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38314852

RESUMO

The continuous evolution of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been accompanied by the emergence of viral mutations that pose a great challenge to existing vaccine strategies. It is not fully understood with regard to the role of mutations on the SARS-CoV-2 spike protein from emerging viral variants in T cell immunity. In the current study, recombinant eukaryotic plasmids were constructed as DNA vaccines to express the spike protein from multiple SARS-CoV-2 strains. These DNA vaccines were used to immunize BALB/c mice, and cross-T cell responses to the spike protein from these viral strains were quantitated using interferon-γ (IFN-γ) Elispot. Peptides covering the full-length spike protein from different viral strains were used to detect epitope-specific IFN-γ+ CD4+ and CD8+ T cell responses by fluorescence-activated cell sorting. SARS-CoV-2 Delta and Omicron BA.1 strains were found to have broad T cell cross-reactivity, followed by the Beta strain. The landscapes of T cell epitopes on the spike protein demonstrated that at least 30 mutations emerging from Alpha to Omicron BA.5 can mediate the escape of T cell immunity. Omicron and its sublineages have 19 out of these 30 mutations, most of which are new, and a few are inherited from ancient circulating variants of concerns. The cross-T cell immunity between SARS-CoV-2 prototype strain and Omicron strains can be attributed to the T cell epitopes located in the N-terminal domain (181-246 aa [amino acids], 271-318 aa) and C-terminal domain (1171-1273 aa) of the spike protein. These findings provide in vivo evidence for optimizing vaccine manufacturing and immunization strategies for current or future viral variants.


Assuntos
COVID-19 , Vacinas de DNA , Animais , Camundongos , Humanos , Epitopos de Linfócito T/genética , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética , Imunidade Celular , Mutação , Interferon gama , Anticorpos Antivirais , Anticorpos Neutralizantes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...